Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Fang-Zhong Hu, Min Zhang, Hai-Bin Song, Xiao-Mao Zou and Hua-Zheng Yang*

State Key Laboratory and Institute of ElementoOrganic Chemistry, Nankai University, Tianjin, Weijin Road No. 94, Tianjin, People's Republic of China

Correspondence e-mail:
chshengyao@mail.nankai.edu.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.053$
$w R$ factor $=0.162$
Data-to-parameter ratio $=14.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

3-Benzyloxy-6-fluoropyridazine

The title molecule, $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{FN}_{2} \mathrm{O}$, was synthesized from 3,6difluoropyridazine, benzyl alcohol and sodium hydroxide in $\mathrm{CH}_{3} \mathrm{CN}$ under reflux. The asymmetric unit contains two independent molecules with nearly identical geometry. In the crystal structure, the molecules are linked by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Comment

Pyridazine derivatives are very attractive because of their varied bioactivity. For example, maleic hydrazide, pyrazon and norflurazon are widely used as herbicides. In addition, some of them possess pesticidal activity (Endo et al., 2000), antiviral activity (Raymond et al., 1991) and plant-growth regulating activity (Matsumoto \& Ishitani, 1988). This led us to pay more attention to the synthesis and structure determination of these compounds. Recently, we synthesized a series of pyridazine derivatives to study the relationship between structure and herbicidal activity. We report here the crystal structure of the title compound, (I).

(I)

The asymmetric unit of (I) contains two independent molecules (Fig. 1); the geometry of these two molecules is nearly identical. The dihedral angle between planes $\mathrm{C} 1-\mathrm{C} 4 / \mathrm{N} 1 / \mathrm{N} 2$ and $\mathrm{C} 6-\mathrm{C} 11$ is $31.8(1)^{\circ}$, and that between planes $\mathrm{C} 12-\mathrm{C} 15 /$ $\mathrm{N} 3 / \mathrm{N} 4$ and $\mathrm{C} 17-\mathrm{C} 22$ is 28.1 (2) ${ }^{\circ}$. The $\mathrm{C} 4-\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 6$ and $\mathrm{C} 15-\mathrm{O} 2-\mathrm{C} 16-\mathrm{C} 17$ torsion angles are 172.0 (3) and $171.8(4)^{\circ}$, respectively. In the crystal structure, the two independent molecules are linked through a $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction involving the $\mathrm{C} 6-\mathrm{C} 11$ benzene ring (centroid Cg 1). A weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bond is also observed (Table 1).

Received 13 June 2005
Accepted 16 June 2005 Online 24 June 2005

Experimental

The title compound was synthesized according to the reported procedure of Yang et al. (2002), by refluxing 3,6-difluoropyridazine $(0.24 \mathrm{~g}, 2.06 \mathrm{mmol})$, benzyl alcohol $(0.22 \mathrm{~g}, 2.03 \mathrm{mmol})$ and sodium hydroxide ($0.10 \mathrm{~g}, 2.50 \mathrm{mmol}$) in acetonitrile (20 ml) for 2 h . After cooling, the reaction mixture was poured into water. The precipitate was filtered off and recrystallized from petrolum ether, giving single crystals suitable for X-ray diffraction.

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{FN}_{2} \mathrm{O}$
$M_{r}=204.20$
Monoclinic, $P 2_{1} / c$
$a=29.409(4) \AA$
$b=5.8286(14) \AA$
$c=11.730(3) \AA$
$\beta=101.220(8){ }^{\circ}$
$V=1972.3(7) \AA^{3}$
$Z=8$

Data collection

Bruker SMART CCD area-detector
\quad diffractometer
φ and ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Sheldrick, 1996 $)$
$T_{\min }=0.950, T_{\max }=0.990$
11179 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.162$
$S=0.98$
4027 reflections
273 parameters
H -atom parameters constrained
$D_{x}=1.375 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1457
\quad reflections
$\theta=2.8-20.8^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=294(2) \mathrm{K}$
Prism, colourless
$0.40 \times 0.18 \times 0.10 \mathrm{~mm}$

4027 independent reflections
1718 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.072$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-36 \rightarrow 36$
$k=-4 \rightarrow 7$
$l=-14 \rightarrow 11$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0666 P)^{2}\right. \\
& +0.0302 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\text {max }}=0.19 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.17 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXTL } \\
& \text { Extinction coefficient: } 0.0057 \text { (11) }
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).
$C g 1$ is the centroid of the $\mathrm{C} 6-\mathrm{C} 11$ benzene ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{~F} 1^{\mathrm{i}}$	0.93	2.54	$3.350(5)$	146
$\mathrm{C} 20-\mathrm{H} 20 \cdots \mathrm{C} 1$	0.93	3.07	$3.723(6)$	128

Symmetry code: (i) $-x+1, y+\frac{1}{2},-z+\frac{3}{2}$.
The structure is twinned (twin matrix 101/0 $0 \overline{1} / 00 \overline{1}$), with a twinning factor of 0.291 (2). All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances of 0.93 or $0.97 \AA$, and included in the final cycles of refinement using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent atom).

Figure 1
The asymmetric unit of (I), showing 40% probability displacement ellipsoids and the atom-numbering scheme. The dashed line represents the $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

The authors acknowledge the financial support of the National Natural Science Foundation of China (grant No. 20302004) and the Doctors' Special Foundation of the Higher Education Ministry (grant No. 20020055022).

References

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Endo, Y., Nakagawa, H. \& Manabe, K. (2000). WO Patent No. 0020409. Matsumoto, A. \& Ishitani, K. (1988). Jpn Patent No. 63264575.
Raymond, A. S., Marcel, J. M. V. A., Joannes, J. M. W. \& Marcel, G. M. L. (1991). US Patent No. 5001125.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Yang, H.-Z., Wang, X., Hu, F.-Z. \& Yang, X.-F. (2002). Chem. J. Chin. Univ. 23, 2261-2263.

